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Abstract – 
Structural flaws in scaffolds can lead to fatal 

accidents on construction sites, and the installation 
status of scaffold joints is crucial for the safety of 
scaffolds. However, manual inspection of scaffold 
joints can be challenging due to their small size and 
large quantity. This paper presents a scaffold joint 
inspection mechanism using a Terrestrial Laser 
Scanner (TLS) to address the challenge of inspecting 
large numbers of scaffold joints for structural flaws. 
Scaffold members are first extracted from the TLS-
acquired point clouds using a 3D segmentation model 
to generate scaffold joint image sets. Then, a rule-
based classifier is used on the image sets to identify 
the installation status of each joint. Our experiment 
showed 82.1% accuracy in scaffold joint safety 
analysis and successfully localized the unsafe joints on 
the 3D point cloud data.  
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1 Introduction 
Point cloud data obtained through Terrestrial Laser 

Scanner (TLS) is more accurate than that obtained 
through photogrammetry due to its high sensor accuracy 
and the simplicity of static scan registration. Furthermore, 
depending on the scanner, it is also possible to obtain 
RGB or intensity information, allowing for the 
acquisition of texture information as well. Due to the 
advantages of TLS-acquired data, TLS is frequently used 
in construction site quality control research. Wang et al. 
[1] extracted information for rebar quality assessment by
performing automated rebar position estimation using the
(x, y, z) coordinate information and (r, g, b) color
information of the point clouds obtained by TLS. Erkal
and Hajjar [2] used texture-mapped 3D data obtained
with a camera-integrated TLS to detect damages on
building surfaces.

The unstable state of scaffolds is a major cause of 

fatalities at construction sites. According to the Korean 
Ministry of Employment and Labor [3], 53% (341 cases) 
of occupational fatalities occurred in the construction 
industry in 2022. Among them, 208 fatalities were related 
to accidents that occurred in temporary structures; the 
statistic shows the importance of monitoring the safety 
condition of temporary structures. Typical causes of 
scaffold incidents include lack of fall protection, 
instability of the scaffold structure, overloading, and 
being struck by falling tools [4]. 

A previous study [5] investigated the detachment 
status of various components of scaffolds by directly 
processing the point clouds obtained by TLS. In the case 
of attached scaffold components, joint inspection is 
required to ensure proper installation. However, with 
large-scale construction site data, determining the 
presence of extremely small objects like the pins of a 
ringlock scaffold through direct processing of point 
clouds is computationally inefficient. On the other hand, 
Paik et al. [6] were able to efficiently solve the joint 
safety analysis task through the use of UAV-acquired 
images. However, since the image data do not include 
location or depth information, the automatic localization 
of the detected joint is challenging. 

Various studies have utilized the fusion of 3D point 
clouds and 2D images. Nguyen et al. [7] employed 
images to effectively detect small features such as cracks 
in 3D data. They concatenated the image pixel features 
with low-density point clouds of the crack area and 
performed upsampling. Yang et al. [8] proposed Mem3D 
for effective 3D object reconstruction using a single-view 
image. For training Mem3D, the correspondence of the 
image-voxel pair of the dataset was used, including the 
memory network. 

Motivated by the limitations of previous studies, we 
propose a methodology that combines the advantages of 
3D point cloud data and 2D image data. The proposed 
method involves generating images from point cloud data, 
processing the generated images, and re-projecting the 
information processed from the image onto the 3D point 
clouds. This method allows us to use the rich data quality 
of point clouds and the efficiency of image processing to 
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effectively locate the unsafe joints in the scaffold. 

2 Methodology 
In this research, the semantic segmentation through 

RandLA-Net [9] and then post-processing for the desired 
information were based on the method proposed in [5]. 
Therefore, this paper describes the three parts after the 
semantic segmentation: Point-to-Image translation, 
object detection, and joint safety analysis. The overall 
framework is shown in Figure 1. 

2.1 Point-to-Image 
By using the algorithm from [5], we can obtain 

representative (x, y, z) coordinates of the “upright” and 
the “guard rail” in a scaffold. Combining these two 
information resulted in the intersection points of “upright” 
and “guard rail,” which is equal to the center coordinate 
of every joint. Afterwards, each joint coordinate is used 
as a center to crop a 20×20×20 (cm) sized bounding box 
from the point clouds, in order to extract the point cloud 
data for each joint. The joint extraction framework is 
shown in Figure 2. Then, the open-source library 
Open3D’s [10] Visualizer function is utilized to save the 
compressed appearance in the required viewpoint vector 
direction as an image for each joint point clouds. The 
required viewpoint vector varies depending on the type 
of joint. As shown in Figure 3, parallel joint (Figure 3(b)) 
generates one image from one viewpoint, while corner 
joint (Figure 3(c)) generates two images from two 
viewpoints. 

2.2 Object detection 
Images generated through the Point-to-Image 

algorithm are fed into the YOLOv5 [11] model trained to 
detect “ledger end” and “tail” of the joint (Figure 4). The 
generated images are in the form of a white background 
with “upright” passing in the middle and “ledger end” 
and “tail” on sides of the “upright.” The two components’ 
information is sufficient to inspect the safety status of a 
joint. “Ledger end” indicates that there is a joint that 
should be inspected in that location, and “tail” is only 
visible when the pin is properly inserted into the 
corresponding “ledger end.” 

2.3 Joint safety analysis and localization 
The safety status of each joint is inspected through the 

information of “ledger end” and “tail” detected through 
YOLOv5 in each image. If “ledger end” does not exist in 
an image (Figure 5(c)), the image is excluded from 
inspection because it does not have a joint. If “ledger end” 
exists, it indicates that a joint exists in the image and the 
number of detected “tail” and that of “ledger end” are 
compared. If the number of detected “tail” is less than 
that of “ledger end,” it is judged as unsafe because the 
“tail” is not visible (Figure 5(b)); there is a risk of 
accident due to incorrect insertion of pins and loose joints. 
In the case of a corner joint, if either of the two images of 
a single joint is classified as unsafe, then the joint is 
considered unsafe. The scenarios of safe, unsafe, and no 
joint are presented in Figure 5. The flowchart of the rule-
based joint safety classifier is shown in Figure 6. 

In order to localize the unsafe joint images onto the 
point cloud map, we included the index of the 
corresponding joint in the file name format generated 
during the Point-to-Image algorithm. Through the index 
number, we were able to easily determine the (x, y, z) 
coordinates of the detected joint.

Figure 1. Overall framework. 



Figure 2. Joint extraction framework. 

Figure 3. Two types of joints and the images generated from each type; (a) bird-eye view of a scaffold, (b) an 
example of parallel joint (left: point clouds, right: generated image), (c) an example of corner joint (left: point 

clouds, right: generated image). 

Figure 4. Image of a scaffold joint. 

Figure 5. Scenario of joint safety status; (a) safe, 
(b) unsafe: tail is not visible on the right pin, (c)

no joint: ledger end is not visible. 



Figure 6. Rule-based joint safety classifier. 

3 Experiments and Results 
In this section, we present detailed information about 

the data used in the experiments and the evaluated results. 
We also discuss the current limitations and challenges 
revealed through the results of the experiments. 

3.1 Dataset specification 
The data used in this study were acquired from a total 

of three construction sites with ringlock scaffolds. In the 
point cloud data of site A shown in Figure 7, 239 joint 
images were acquired. These 239 images were 
augmented to 478 images by applying the gaussian blur 
method; to smoothen the variation in the images made by 
point size difference without breaking the geometry of 
the joint. In site B, a total of 90 joint images were 
acquired from the point cloud data. This study targets to 
inspect the structural safety of the scaffold after it is 
erected and before it is disassembled. Therefore, image 
data were acquired at the upper part of the scaffold 
without safety nets at site B. The images obtained from 
site A were used as the training dataset for YOLOv5, 
while the images obtained from site B were used as the 
validation dataset for YOLOv5. Point cloud data 
acquired from site C were used as test data. 

All sites did not have actual unsafe joints. Therefore, 
a total of three unsafe joints were manually created by 
cropping and removing the scaffold joint pins from the 
point cloud data acquired from site C. 

Figure 7. Image (left) and acquired point clouds 
(right) of data acquisition sites. 

3.2 Results 
Applying the methodology of [5] to the site C data 

yields 3D segmentation results that are divided by 
scaffold entities (results of former research in Figure 1). 
The segmented point cloud data of site C were fed into 
the Point-to-Image algorithm, producing 114 images 
from 78 joints (42 parallel joints and 36 corner joints) in 
12m 53s. Object detection, joint safety analysis, and 
localization performed on the generated images took 1.74 
seconds in total. Our methodology resulted in a per image 
accuracy of 74.6% and a per joint accuracy of 82.1% for 
site C. The results are summarized in Table 1. 

Table 1. Joint safety analysis results 

Accuracy (%) 
Per Image (114 images) 74.6 

Per Joint (78 joints) 82.1 

As explained in Section 2.3, unsafe joints can be 
automatically localized on the point cloud map. In order 
to visually display the locations, we created a  



Figure 8. Localization & visualization of unsafe joints; (a) Prediction (red box), (b) Ground truth (blue box). 

visualization algorithm that generates a red box around 
the unsafe joint. Figure 8(a) is the localization result of 
predicted unsafe joints. 

3.3 Discussion 
As shown in Figure 9, the proposed method 

successfully inspected a total of 78 joints in site C with a 
per joint accuracy of 82.1%. The 14 joints that were 
incorrectly predicted include one case that predicted an 
unsafe joint as “no joint” and two cases that predicted a 
safe joint as unsafe. These 14 misclassifications were 
mainly divided into two reasons; when the joint is 
occluded by obstacles such as work platforms or work 
ropes (Figure 10(a)), and when the object detection 
model fails to detect the joint (Figure 10(b)).  

Figure 9. Confusion matrix of the safety analysis 
results. Numbers represent the number of joints. 

Safety analysis is a field that requires perfect 
predictions. False negative predictions are particularly 
important to avoid; an unsafe object predicted to be safe 
is vulnerable to accidents. Our model had one false 
negative error (red box in Figure 9), which occurred 
when the joint was occluded by a work rope. 

4 Conclusion 
This study presented a methodology for automating 

scaffold joint safety analysis by generating 2D image 
data from 3D point cloud data; thereby combining the 
advantages of both data types. The framework of this 
study is divided into three parts including Point-to-Image 
transformation, object detection, and rule-based joint 
safety analysis and localization. An accuracy of 82.1% 
was obtained for the joint safety status of a ringlock 
scaffold on a construction site. In contrast to previous 
image-based studies, the proposed method was able to 
easily localize the identified unsafe joints.  

In future studies, the limitations mentioned in section 
3.3 should be addressed. The scanning method should be 
optimized to minimize occlusion of data. The training 
dataset of the detection model should be supplemented to 
increase the accuracy of the detection model. 
Additionally, the joint analysis method should be 
developed and tested to be applicable to various sizes and 
types of scaffolds. 
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Figure 10. Misclassified image example; (a) 
occlusion by work rope, (b) detection failure of 

YOLOv5. 
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